Resonance of Spike Discharge Modulation in Neurons of the Guinea Pig Medial Vestibular Nucleus

Author:

Ris L.1,Hachemaoui M.2,Vibert N.2,Godaux E.1,Vidal P. P.2,Moore L. E.2

Affiliation:

1. Laboratory of Neurosciences, University of Mons-Hainaut, B-7000 Mons, Belgium

2. Laboratoire de Neurobiologie des Réseaux Sensorimoteurs, Centre National de la Recherche Scientifique, Université Paris 5, ESA 7060, 75270 Paris Cedex 06, France; and

Abstract

The modulation of action potential discharge rates is an important aspect of neuronal information processing. In these experiments, we have attempted to determine how effectively spike discharge modulation reflects changes in the membrane potential in central vestibular neurons. We have measured how their spike discharge rate was modulated by various current inputs to obtain neuronal transfer functions. Differences in the modulation of spiking rates were observed between neurons with a single, prominent after hyperpolarization (AHP, type A neurons) and cells with more complex AHPs (type B neurons). The spike discharge modulation amplitudes increased with the frequency of the current stimulus, which was quantitatively described by a neuronal model that showed a resonance peak >10 Hz. Modeling of the resonance peak required two putative potassium conductances whose properties had to be markedly dependent on the level of the membrane potential. At low frequencies (≤0.4 Hz), the gain or magnitude functions of type A and B discharge rates were similar relative to the current input. However, resting input resistances obtained from the ratio of the membrane potential and current were lower in type B compared with type A cells, presumably due to a higher level of active potassium conductances at rest. The lower input resistance of type B neurons was compensated by a twofold greater sensitivity of their firing rate to changes in membrane potential, which suggests that synaptic inputs on their dendritic processes would be more efficacious. This increased sensitivity is also reflected in a greater ability of type B neurons to synchronize with low-amplitude sinusoidal current inputs, and in addition, their responses to steep slope ramp stimulation are enhanced over the more linear behavior of type A neurons. This behavior suggests that the type B MVNn are moderately tuned active filters that promote high-frequency responses and that type A neurons are like low-pass filters that are well suited for the resting tonic activity of the vestibular system. However, the more sensitive and phasic type B neurons contribute to both low- and high-frequency control as well as signal detection and would amplify the contribution of both irregular and regular primary afferents at high frequencies.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3