Gravitoinertial Force Magnitude and Direction Influence Head-Centric Auditory Localization

Author:

DiZio Paul1,Held Richard2,Lackner James R.1,Shinn-Cunningham Barbara3,Durlach Nathaniel4

Affiliation:

1. Ashton Graybiel Spatial Orientation Laboratory and Volen Center for Complex Systems, Brandeis University, Waltham 02454-9110;

2. Department of Brain and Cognitive Science and

3. Center for Adaptive Systems, Boston University, Boston, Massachusetts 02215

4. Research Laboratory of Electronics, Department of Electrical Engineering, Massachusetts Institute of Technology, Cambridge 02139; and

Abstract

We measured the influence of gravitoinertial force (GIF) magnitude and direction on head-centric auditory localization to determine whether a true audiogravic illusion exists. In experiment 1, supine subjects adjusted computer-generated dichotic stimuli until they heard a fused sound straight ahead in the midsagittal plane of the head under a variety of GIF conditions generated in a slow-rotation room. The dichotic stimuli were constructed by convolving broadband noise with head-related transfer function pairs that model the acoustic filtering at the listener's ears. These stimuli give rise to the perception of externally localized sounds. When the GIF was increased from 1 to 2 g and rotated 60° rightward relative to the head and body, subjects on average set an acoustic stimulus 7.3° right of their head's median plane to hear it as straight ahead. When the GIF was doubled and rotated 60° leftward, subjects set the sound 6.8° leftward of baseline values to hear it as centered. In experiment 2, increasing the GIF in the median plane of the supine body to 2 g did not influence auditory localization. In experiment 3, tilts up to 75° of the supine body relative to the normal 1 g GIF led to small shifts, 1–2°, of auditory setting toward the up ear to maintain a head-centered sound localization. These results show that head-centric auditory localization is affected by azimuthal rotation and increase in magnitude of the GIF and demonstrate that an audiogravic illusion exists. Sound localization is shifted in the direction opposite GIF rotation by an amount related to the magnitude of the GIF and its angular deviation relative to the median plane.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Auditory localization: a comprehensive practical review;Frontiers in Psychology;2024-07-10

2. Sound localization in patients with bilateral vestibulopathy;European Archives of Oto-Rhino-Laryngology;2022-05-10

3. The effect of spatial auditory landmarks on ambulation;Gait & Posture;2018-02

4. The Perception of Auditory Motion;TRENDS HEAR;2016

5. The Perception of Auditory Motion;Trends in Hearing;2016-01-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3