Direction Tuning of Inhibitory Inputs to the Turtle Accessory Optic System

Author:

Ariel Michael1,Kogo Naoki1

Affiliation:

1. Department of Anatomy and Neurobiology, Saint Louis University School of Medicine, St. Louis, Missouri 63104

Abstract

Neurons in turtle accessory optic system (basal optic nucleus, BON) were studied to compare excitatory and inhibitory visual inputs. Using a reduced in vitro brain stem preparation with the eyes attached, previous studies only showed a monosynaptic retinal input to the BON from direction-sensitive retinal ganglion cells that share a common preferred direction. Now using an intact brain stem preparation, not only did BON neurons display inhibitory postsynaptic potentials [IPSP(C)s] spontaneously, but IPSP(C)s were also evoked by visual pattern motion, they had their polarity reversed near the chloride equilibrium potential[Formula: see text] and they were blocked by the GABAA antagonist bicuculline. Because excitatory postsynaptic currents had reversal potentials >0 mV, BON cells were recorded using patch electrodes filled with QX-314 or Cs+ to measure the cell's direction tuning also at that higher reversal potential. For most of the BON neurons studied, their visual excitation and inhibition had a very similar preferred direction, indicating that both synaptic inputs were maximally active onto the same cell under the same stimulus conditions. These competing inputs may result from connections between the pretectum and accessory optic nuclei. Such synaptic interactions may serve a functional role in the visual processing necessary to create retinal slip signals for oculomotor control.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3