Encoding of Different Aspects of Afferent Activities by Two Types of Cells in the Corpus Glomerulosum of a Teleost Brain

Author:

Tsutsui Hidekazu1,Yamamoto Naoyuki2,Ito Hironobu2,Oka Yoshitaka1

Affiliation:

1. Misaki Marine Biological Station, Graduate School of Science, The University of Tokyo, Kanagawa 238-0225; and

2. Department of Anatomy, Laboratory for Comparative Neuromorphology, Nippon Medical School, Tokyo 113-8602, Japan

Abstract

The corpus glomerulosum (CG) is an expansive nucleus in acanthopterigian teleosts that has been suggested to be involved in vision-related information processing and the control of the hypothalamic function. The CG has only two types of constituent cells, the large cell and the small cell, and well-defined afferent/efferent fiber connections. One of the three types of teleostean CG, type III has additional outstanding morphological characters: clearly laminated organization and giant (>50 μm in diameter) tips of postsynaptic dendrites. Although such histological architecture is potentially advantageous for the study of information processing in a brain nucleus based on the physiological properties of identified cells and synapses, previous studies on the CG have been limited to anatomy. In this study, we developed a slice preparation of the type III CG in a teleost, Stephanoplepis cirrhifer, and studied the morphology and physiology of individual cells and synaptic transmission by means of dendritic intracellular and somatic whole cell recordings. The characteristic morphology of the two types of cells was revealed by intracellular staining. While both of them received similar glutamatergic and GABAergic projections from the nucleus corticalis mediated by AMPA, N-methyl-d-aspartate, and GABAA receptors, they showed quite distinctive firing properties and postsynaptic responses with current injection and synaptic inputs: the large cell fired a single spike, and the small cell fired a spike train whose frequency was dependent on the stimulus intensity. Furthermore, the large cell showed low-pass temporal filtering properties with paired stimuli. These results suggest that the large cell and the small cell may encode different aspects of the corticalis activities.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3