Affiliation:
1. Misaki Marine Biological Station, Graduate School of Science, The University of Tokyo, Kanagawa 238-0225; and
2. Department of Anatomy, Laboratory for Comparative Neuromorphology, Nippon Medical School, Tokyo 113-8602, Japan
Abstract
The corpus glomerulosum (CG) is an expansive nucleus in acanthopterigian teleosts that has been suggested to be involved in vision-related information processing and the control of the hypothalamic function. The CG has only two types of constituent cells, the large cell and the small cell, and well-defined afferent/efferent fiber connections. One of the three types of teleostean CG, type III has additional outstanding morphological characters: clearly laminated organization and giant (>50 μm in diameter) tips of postsynaptic dendrites. Although such histological architecture is potentially advantageous for the study of information processing in a brain nucleus based on the physiological properties of identified cells and synapses, previous studies on the CG have been limited to anatomy. In this study, we developed a slice preparation of the type III CG in a teleost, Stephanoplepis cirrhifer, and studied the morphology and physiology of individual cells and synaptic transmission by means of dendritic intracellular and somatic whole cell recordings. The characteristic morphology of the two types of cells was revealed by intracellular staining. While both of them received similar glutamatergic and GABAergic projections from the nucleus corticalis mediated by AMPA, N-methyl-d-aspartate, and GABAA receptors, they showed quite distinctive firing properties and postsynaptic responses with current injection and synaptic inputs: the large cell fired a single spike, and the small cell fired a spike train whose frequency was dependent on the stimulus intensity. Furthermore, the large cell showed low-pass temporal filtering properties with paired stimuli. These results suggest that the large cell and the small cell may encode different aspects of the corticalis activities.
Publisher
American Physiological Society
Subject
Physiology,General Neuroscience
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献