Affiliation:
1. Sächsische Akademie der Wissenschaften zu Leipzig, D-07743 Jena, Germany
Abstract
The modulation of voltage-gated Na+ currents in isolated somata of dorsal unpaired median (DUM) neurons of the cockroach Periplaneta americana was investigated using the patch-clamp technique. The neuropeptide Neurohormone D (NHD), which belongs to the family of adipokinetic hormones, reversibly reduced the Na+ current in concentration-dependent manner (1 pM to 10 nM). At 10 nM, NHD caused an attenuation of the maximum of current-voltage ( I-V) relation for peak currents by 23 ± 6%. An analysis of NHD action on current kinetics in terms of the Hodgkin-Huxley formalism revealed that NHD reduces the time constant of inactivation, whereas steady-state activation and inactivation as well as the time constant of activation were not affected. In addition, NHD prolonged the recovery from inactivation. The cAMP analogue 8-bromo-cAMP, forskolin, and the catalytic subunit of protein kinase A mimicked the action of NHD. Furthermore, preincubation of cells with the protein kinase A inhibitor KT 5720 abolished the action of NHD. Thus NHD seems to modify the Na+ current via channel phosphorylation by protein kinase A. Activation of protein kinase C by oleoylacetylglycerol (OAG) also reduced the Na+ current, but it did not occlude the action of NHD. On the other hand, inhibition of protein kinase C by chelerythrine or Gö 6976 did not essentially impair the NHD effects.
Publisher
American Physiological Society
Subject
Physiology,General Neuroscience
Cited by
22 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献