Dopamine-Mediated Volume Transmission in Midbrain Is Regulated by Distinct Extracellular Geometry and Uptake

Author:

Cragg Stephanie J.1,Nicholson Charles2,Kume-Kick June2,Tao Lian2,Rice Margaret E.2

Affiliation:

1. University Department of Pharmacology, Oxford OX1 3QT, United Kingdom

2. Department of Physiology and Neuroscience, New York University School of Medicine, New York, New York 10016; and

Abstract

Somatodendritic release of dopamine (DA) in midbrain is, at least in part, nonsynaptic; moreover, midbrain DA receptors are predominantly extrasynaptic. Thus somatodendritic DA mediates volume transmission, with an efficacy regulated by the diffusion and uptake characteristics of the local extracellular microenvironment. Here, we quantitatively evaluated diffusion and uptake in substantia nigra pars compacta (SNc) and reticulata (SNr), ventral tegmental area (VTA), and cerebral cortex in guinea pig brain slices. The geometric parameters that govern diffusion, extracellular volume fraction (α) and tortuosity (λ), together with linear uptake ( k′), were determined for tetramethylammonium (TMA+), and for DA, using point-source diffusion combined with ion-selective and carbon-fiber microelectrodes. TMA+-diffusion measurements revealed a large α of 30% in SNc, SNr, and VTA, which was significantly higher than the 22% in cortex. Values for λ and k′ for TMA+ were similar among regions. Point-source DA-diffusion curves fitted theory well with linear uptake, with significantly higher values of k′ for DA in SNc and VTA (0.08–0.09 s 1) than in SNr (0.006 s 1), where DA processes are sparser. Inhibition of DA uptake by GBR-12909 caused a greater decrease in k′ in SNc than in VTA. In addition, DA uptake was slightly decreased by the norepinephrine transport inhibitor, desipramine in both regions, although this was statistically significant only in VTA. We used these data to model the radius of influence of DA in midbrain. Simulated release from a 20-vesicle point source produced DA concentrations sufficient for receptor activation up to 20 μm away with a DA half-life at this distance of several hundred milliseconds. Most importantly, this model showed that diffusion rather than uptake was the most important determinant of DA time course in midbrain, which contrasts strikingly with the striatum where uptake dominates. The issues considered here, while specific for DA in midbrain, illustrate fundamental biophysical properties relevant for all extracellular communication.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3