Disruption of GABAA Receptors on GABAergic Interneurons Leads to Increased Oscillatory Power in the Olfactory Bulb Network

Author:

Nusser Zoltan12,Kay Leslie M.34,Laurent Gilles3,Homanics Gregg E.5,Mody Istvan1

Affiliation:

1. Department of Neurology, UCLA School of Medicine, Los Angeles 90095-1769;

2. Laboratory of Cellular Neurophysiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, 1083 Budapest, Hungary;

3. Biology Division, California Institute of Technology, Pasadena, California 91125;

4. Department of Psychology, Institute for Mind and Biology, University of Chicago, Chicago, Illinois 60637

5. Departments of Anesthesiology and Pharmacology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15260; and

Abstract

Synchronized neural activity is believed to be essential for many CNS functions, including neuronal development, sensory perception, and memory formation. In several brain areas GABAA receptor–mediated synaptic inhibition is thought to be important for the generation of synchronous network activity. We have used GABAA receptor β3 subunit deficient mice (β3−/−) to study the role of GABAergic inhibition in the generation of network oscillations in the olfactory bulb (OB) and to reveal the role of such oscillations in olfaction. The expression of functional GABAA receptors was drastically reduced (>93%) in β3−/− granule cells, the local inhibitory interneurons of the OB. This was revealed by a large reduction of muscimol-evoked whole-cell current and the total current mediated by spontaneous, miniature inhibitory postsynaptic currents (mIPSCs). In β3−/− mitral/tufted cells (principal cells), there was a two-fold increase in mIPSC amplitudes without any significant change in their kinetics or frequency. In parallel with the altered inhibition, there was a significant increase in the amplitude of theta (80% increase) and gamma (178% increase) frequency oscillations in β3−/− OBs recorded in vivo from freely moving mice. In odor discrimination tests, we found β3−/− mice to be initially the same as, but better with experience than β3+/+ mice in distinguishing closely related monomolecular alcohols. However, β3−/− mice were initially better and then worse with practice than control mice in distinguishing closely related mixtures of alcohols. Our results indicate that the disruption of GABAAreceptor–mediated synaptic inhibition of GABAergic interneurons and the augmentation of IPSCs in principal cells result in increased network oscillations in the OB with complex effects on olfactory discrimination, which can be explained by an increase in the size or effective power of oscillating neural cell assemblies among the mitral cells of β3−/− mice.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 193 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3