Visual Influences on the Development and Recovery of the Vestibuloocular Reflex in the Chicken

Author:

Goode Christopher T.12,Maney Donna L.2,Rubel Edwin W12,Fuchs Albert F.23

Affiliation:

1. Virginia Merrill Bloedel Hearing Research Center,

2. Program in Neurobiology and Behavior, and

3. Regional Primate Research Center, University of Washington, Seattle, Washington 98195

Abstract

Whenever the head turns, the vestibuloocular reflex (VOR) produces compensatory eye movements to help stabilize the image of the visual world on the retina. Uncompensated slip of the visual world across the retina results in a gradual change in VOR gain to minimize the image motion. VOR gain changes naturally during normal development and during recovery from neuronal damage. We ask here whether visual slip is necessary for the development of the chicken VOR (as in other species) and whether it is required for the recovery of the VOR after hair cell loss and regeneration. In the first experiment, chickens were reared under stroboscopic illumination, which eliminated visual slip. The horizontal and vertical VORs (h- and vVORs) were measured at different ages and compared with those of chickens reared in normal light. Strobe-rearing prevented the normal development of both h- and vVORs. After 8 wk of strobe-rearing, 3 days of exposure to normal light caused the VORs to recover partially but not to normal values. In the second experiment, 1-wk-old chicks were treated with streptomycin, which destroys most vestibular hair cells and reduces hVOR gain to zero. In birds, vestibular hair cells regenerate so that after 8 wk in normal illumination they appear normal and hVOR gain returns to values that are normal for birds of that age. The treated birds in this study recovered in either normal or stroboscopic illumination. Their hVOR and vVOR and vestibulocollic reflexes (VCR) were measured and compared with those of untreated, age-matched controls at 8 wk posthatch, when hair cell regeneration is known to be complete. As in previous studies, the gain of the VOR decreased immediately to zero after streptomycin treatment. After 8 wk of recovery under normal light, the hVOR was normal, but vVOR gain was less than normal. After 8 wk of recovery under stroboscopic illumination, hVOR gain was less than normal at all frequencies. VCR recovery was not affected by the strobe environment. When streptomycin-treated, strobe-recovered birds were then placed in normal light for 2 days, hVOR gain returned to normal. Taken together, the results of these experiments suggest that continuous visual feedback can adjust VOR gain. In the absence of appropriate visual stimuli, however, there is a default VOR gain and phase to which birds recover or revert, regardless of age. Thus an 8-wk-old chicken raised in a strobe environment from hatch would have the same gain as a streptomycin-treated chicken that recovers in a strobe environment.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3