Effect of Attentive Fixation in Macaque Thalamus and Cortex

Author:

Bender D. B.1,Youakim M.1

Affiliation:

1. Department of Physiology and Biophysics, School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, New York 14214

Abstract

Attentional modulation of neuronal responsiveness is common in many areas of visual cortex. We examined whether attentional modulation in the visual thalamus was quantitatively similar to that in cortex. Identical procedures and apparatus were used to compare attentional modulation of single neurons in seven different areas of the visual system: the lateral geniculate, three visual subdivisions of the pulvinar [inferior, lateral, dorsomedial part of lateral pulvinar (Pdm)], and three areas of extrastriate cortex representing early, intermediate, and late stages of cortical processing (V2, V4/PM, area 7a). A simple fixation task controlled transitions among three attentive states. The animal waited for a fixation point to appear (ready state), fixated the point until it dimmed (fixation state), and then waited idly to begin the next trial (idle state). Attentional modulation was estimated by flashing an identical, irrelevant stimulus in a neuron's receptive field during each of the three states; the three responses defined a “response vector” whose deviation from the line of equal response in all three states (the main diagonal) indicated the character and magnitude of attentional modulation. Attentional modulation was present in all visual areas except the lateral geniculate, indicating that modulation was of central origin. Prevalence of modulation was modest (26%) in pulvinar, and increased from 21% in V2 to 43% in 7a. Modulation had a push-pull character (as many cells facilitated as suppressed) with respect to the fixation state in all areas except Pdm where all cells were suppressed during fixation. The absolute magnitude of attentional modulation, measured by the angle between response vector and main diagonal expressed as a percent of the maximum possible angle, differed among brain areas. Magnitude of modulation was modest in the pulvinar (19–26%), and increased from 22% in V2 to 41% in 7a. However, average trial-to-trial variability of response, measured by the coefficient of variation, also increased across brain areas so that its difference among areas accounted for more than 90% of the difference in modulation magnitude among areas. We also measured attentional modulation by the ratio of cell discharge due to attention divided by discharge variability. The resulting signal-to-noise ratio of attention was small and constant, 1.3 ± 10%, across all areas of pulvinar and cortex. We conclude that the pulvinar, but not the lateral geniculate, is as strongly affected by attentional state as any area of visual cortex we studied and that attentional modulation amplitude is closely tied to intrinsic variability of response.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3