Modulation of Excitatory Synaptic Transmission by GABAC Receptor-Mediated Feedback in the Mouse Inner Retina

Author:

Matsui Ko1,Hasegawa Jun1,Tachibana Masao1

Affiliation:

1. Department of Psychology, Graduate School of Humanities and Sociology, The University of Tokyo, Tokyo 113-0033, Japan

Abstract

In many vertebrate CNS synapses, the neurotransmitter glutamate activates postsynaptic non- N-methyl-d-aspartate (NMDA) and NMDA receptors. Since their biophysical properties are quite different, the time course of excitatory postsynaptic currents (EPSCs) depends largely on the relative contribution of their activation. To investigate whether the activation of the two receptor subtypes is affected by the synaptic interaction in the inner plexiform layer (IPL) of the mouse retina, we analyzed the properties of the light-evoked responses ofon-cone bipolar cells and on-transient amacrine cells in a retinal slice preparation. on-transient amacrine cells were whole cell voltage-clamped, and the glutamatergic synaptic input from bipolar cells was isolated by a cocktail of pharmacological agents (bicuculline, strychnine, curare, and atropine). Direct puff application of NMDA revealed the presence of functional NMDA receptors. However, the light-evoked EPSC was not significantly affected byd(−)-2-amino-5-phosphonopentanoic acid (d-AP5), but suppressed by 2,3-dioxo-6-nitro-1,2,3,4-tetrahydrobenzo[f]quinoxaline-7-sulfonamide (NBQX) or 1-(4-aminophenyl)-4-methyl-7,8-methylenedioxy-5H-2,3-benzodiazepine hydrochloride (GYKI 52466). These results indicate that the light-evoked EPSC is mediated mainly by AMPA receptors under this condition. Since bipolar cells have GABACreceptors at their terminals, it has been suggested that bipolar cells receive feedback inhibition from amacrine cells. Application of (1,2,5,6-tetrahydropyridin-4-yl)methylphosphinic acid (TPMPA), a specific blocker of GABAC receptors, suppressed both the GABA-induced current and the light-evoked feedback inhibition observed in on-cone bipolar cells and enhanced the light-evoked EPSC of on-transient amacrine cells. In the presence of TPMPA, the light-evoked EPSC of amacrine cells was composed of AMPA and NMDA receptor-mediated components. Our results suggest that photoresponses of on-transient amacrine cells in the mouse retina are modified by the activation of presynaptic GABAC receptors, which may control the extent of glutamate spillover.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 51 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3