Specific Force of the Rat Extraocular Muscles, Levator and Superior Rectus, Measured In Situ

Author:

Frueh Bartley R.1,Gregorevic Paul1,Williams David A.1,Lynch Gordon S.1

Affiliation:

1. Department of Physiology, The University of Melbourne, Victoria 3010, Australia

Abstract

Extraocular muscles are characterized by their faster rates of contraction and their higher resistance to fatigue relative to limb skeletal muscles. Another often reported characteristic of extraocular muscles is that they generate lower specific forces ( sP o, force per muscle cross-sectional area, kN/m2) than limb skeletal muscles. To investigate this perplexing issue, the isometric contractile properties of the levator palpebrae superioris (levator) and superior rectus muscles of the rat were examined in situ with nerve and blood supply intact. The extraocular muscles were attached to a force transducer, and the cranial nerves exposed for direct stimulation. After determination of optimal muscle length ( L o) and stimulation voltage, a full frequency-force relationship was established for each muscle. Maximum isometric tetanic force ( P o) for the levator and superior rectus muscles was 177 ± 13 and 280 ± 10 mN (mean ± SE), respectively. For the calculation of specific force, a number of rat levator and superior rectus muscles were stored in a 20% nitric acid-based solution to isolate individual muscle fibers. Muscle fiber lengths ( L f) were expressed as a percentage of overall muscle length, allowing a mean L f to L o ratio to be used in the estimation of muscle cross-sectional area. Mean L f: L owas determined to be 0.38 for the levator muscle and 0.45 for the superior rectus muscle. The sP o for the rat levator and superior rectus muscles measured in situ was 275 and 280 kN/m2, respectively. These values are within the range of sP o values commonly reported for rat skeletal muscles. Furthermore P o and sP o for the rat levator and superior rectus muscles measured in situ were significantly higher ( P < 0.001) than P oand sP o for these muscles measured in vitro. The results indicate that the force output of intact extraocular muscles differs greatly depending on the mode of testing. Although in vitro evaluation of extraocular muscle contractility will continue to reveal important information about this group of understudied muscles, the lower sP o values of these preparations should be recognized as being significantly less than their true potential. We conclude that extraocular muscles are not intrinsically weaker than skeletal muscles.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3