Aging and Learning-Specific Changes in Single-Neuron Activity in CA1 Hippocampus During Rabbit Trace Eyeblink Conditioning

Author:

McEchron Matthew D.1,Weible Aldis P.1,Disterhoft John F.1

Affiliation:

1. Department of Cell and Molecular Biology and Institute for Neuroscience, Northwestern University Medical School, Chicago, Illinois 60611

Abstract

Rabbit trace eyeblink conditioning is a hippocampus-dependent task in which the auditory conditioned stimulus (CS) is separated from the corneal airpuff unconditioned stimulus (US) by a 500-ms empty trace interval. Young rabbits are able to associate the CS and US and acquire trace eyeblink conditioned responses (CRs); however, a subset of aged rabbits show poor learning on this task. Several studies have shown that CA1-hippocampal activity is altered by aging; however, it is unknown how aging affects the interaction of CA1 single neurons within local ensembles during learning. The present study examined the extracellular activity of CA1 pyramidal neurons within local ensembles in aged (29–34 mo) and young (3–6 mo) rabbits during 10 daily sessions (80 trials/session) of trace eyeblink conditioning. A single surgically implanted nonmovable stereotrode was used to record ensembles ranging in size from 2 to 12 separated single neurons. A total of six young and four aged rabbits acquired significant levels of CRs, whereas five aged rabbits showed very few CRs similar to a group of five young pseudoconditioned rabbits. Pyramidal cells (2,159 total) were recorded from these four groups during training. Increases in CA1 pyramidal cell firing to the CS and US were diminished in the aged nonlearners. Local ensembles from all groups contained heterogeneous types of pyramidal cell responses. Some cells showed increases while others showed decreases in firing during the trace eyeblink trial. Hierarchical clustering was used to isolate seven different classes of single-neuron responses that showed unique firing patterns during the trace conditioning trial. The proportion of cells in each group was similar for six of seven response classes. Unlike the excitatory modeling patterns reported in previous studies, three of seven response types (67% of recorded cells) exhibited some type of inhibitory decrease to the CS, US, or both. The single-neuron response classes showed different patterns of learning-related activity across training. Several of the single-neuron types from the aged nonlearners showed unique alterations in response magnitude to the CS and US. Cross-correlation analyses suggest that specific single-neuron types provide more correlated single-neuron activity to the ensemble processing of information. However, aged nonlearners showed a significantly lower level of coincident pyramidal cell firing for all cell types within local ensembles in CA1.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3