Neurosteroids Mediate Habituation and Tonic Inhibition in the Auditory Midbrain

Author:

Disney Anita1,Calford Mike B.1

Affiliation:

1. Psychobiology Laboratory, Division of Psychology, The Australian National University, Canberra, ACT 0200, Australia

Abstract

Habituation of the behavioral response to a repetitive stimulus is a well-established observation in perceptual studies and is considered a basic form of nonassociative learning. There is also a long history of physiological studies suggesting that central nervous system habituation is mediated by inhibition. At higher levels of the sensory pathways, such inhibition is mainly contributed by GABAa receptor mechanisms. Concepts of modification of synaptic efficacy that apply to excitatory amino acid synaptic transmission do not have direct parallels with these inhibitory synapses: quantal release of GABA rapidly saturates available receptors at a synapse, placing an upper limit on responsiveness to increased transmitter release. However, pharmacological modulation of GABAa-receptor efficacy with exogenous agents (e.g., benzodiazepines and β-carbolines) is known to occur through allosteric mechanisms that modulate the effectiveness (positive and negative) of GABA at this receptor. The most potent endogenous modulators are 5α-reduced steroids. Production of these steroids was attenuated in adult rats with systemic injection of Finasteride, a competitive substrate for 5α-reductase. This treatment was sufficient to block habituation of the evoked midbrain response to repetitive presentation of an acoustic click. This result confirms that simple habituation is due to an increase in active inhibition, the increase being mediated by steroid modulation of the GABAa-receptor. Finasteride treatment also brought about a 23% increase in the evoked response to a click stimulus, suggesting that 5α-reduced steroids normally contribute to tonic inhibition in the rat inferior colliculus.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3