Role of Mammalian Auditory Cortex in the Perception of Elementary Sound Properties

Author:

Talwar Sanjiv K.1,Musial Pawel G.1,Gerstein George L.1

Affiliation:

1. Department of Neuroscience, University of Pennsylvania, Philadelphia, Pennsylvania 19104

Abstract

Studies in several mammalian species have demonstrated that bilateral ablations of the auditory cortex have little effect on simple sound intensity and frequency-based behaviors. In the rat, for example, early experiments have shown that auditory ablations result in virtually no effect on the rat's ability to either detect tones or discriminate frequencies. Such lesion experiments, however, typically examine an animal's performance some time after recovery from ablation surgery. As such, they demonstrate that the cortex is not essential for simple auditory behaviors in the long run. Our study further explores the role of cortex in basic auditory perception by examining whether the cortex is normally involved in these behaviors. In these experiments we reversibly inactivated the rat primary auditory cortex (AI) using the GABA agonist muscimol, while the animals performed a simple auditory task. At the same time we monitored the rat's auditory activity by recording auditory evoked potentials (AEP) from the cortical surface. In contrast to lesion studies, the rapid time course of these experimental conditions preclude reorganization of the auditory system that might otherwise compensate for the loss of cortical processing. Soon after bilateral muscimol application to their AI region, our rats exhibited an acute and profound inability to detect tones. After a few hours this state was followed by a gradual recovery of normal hearing, first of tone detection and, much later, of the ability to discriminate frequencies. Surface muscimol application, at the same time, drastically altered the normal rat AEP. Some of the normal AEP components vanished nearly instantaneously to unveil an underlying waveform, whose size was related to the severity of accompanying behavioral deficits. These results strongly suggest that the cortex is directly involved in basic acoustic processing. Along with observations from accompanying multiunit experiments that related the AEP to AI neuronal activity, our results suggest that a critical amount of activity in the auditory cortex is necessary for normal hearing. It is likely that the involvement of the cortex in simple auditory perceptions has hitherto not been clearly understood because of underlying recovery processes that, in the long-term, safeguard fundamental auditory abilities after cortical injury.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3