Done in 100 ms: path-dependent visuomotor transformation in the human upper limb

Author:

Gu Chao12,Pruszynski J. Andrew1324,Gribble Paul L.132ORCID,Corneil Brian D.1324

Affiliation:

1. Department of Psychology, University of Western Ontario, London, Ontario, Canada

2. The Brain and Mind Institute, University of Western Ontario, London, Ontario, Canada

3. Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario, Canada

4. Robarts Research Institute, University of Western Ontario, London, Ontario, Canada

Abstract

A core assumption underlying mental chronometry is that more complex tasks increase cortical processing, prolonging reaction times. In this study we show that increases in task complexity alter the magnitude, rather than the latency, of the output for a circuit that rapidly transforms visual information into motor actions. We quantified visual stimulus-locked responses (SLRs), which are changes in upper limb muscle recruitment that evolve at a fixed latency ~100 ms after novel visual stimulus onset. First, we studied the underlying reference frame of the SLR by dissociating the initial eye and hand position. Despite its quick latency, we found that the SLR was expressed in a hand-centric reference frame, suggesting that the circuit mediating the SLR integrated retinotopic visual information with body configuration. Next, we studied the influence of planned movement trajectory, requiring participants to prepare and generate either curved or straight reaches in the presence of obstacles to attain the same visual stimulus location. We found that SLR magnitude was influenced by the planned movement trajectory to the same visual stimulus. On the basis of these results, we suggest that the circuit mediating the SLR lies in parallel to other well-studied corticospinal pathways. Although the fixed latency of the SLR precludes extensive cortical processing, inputs conveying information relating to task complexity, such as body configuration and planned movement trajectory, can preset nodes within the circuit underlying the SLR to modulate its magnitude. NEW & NOTEWORTHY We studied stimulus-locked responses (SLRs), which are changes in human upper limb muscle recruitment that evolve at a fixed latency ~100 ms after novel visual stimulus onset. We showed that despite its quick latency, the circuitry mediating the SLR transformed a retinotopic visual signal into a hand-centric motor command that is modulated by the planned movement trajectory. We suggest that the circuit generating the SLR is mediated through a tectoreticulospinal, rather than a corticospinal, pathway.

Funder

Gouvernement du Canada | Natural Sciences and Engineering Research Council of Canada (Conseil de Recherches en Sciences Naturelles et en Génie du Canada)

Gouvernement du Canada | Canadian Institutes of Health Research (Instituts de recherche en santé du Canada)

Canada Research Chairs (Chaires de recherche du Canada)

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3