Receptive fields of cerebellar cells receiving exteroceptive input in a Gymnotid fish

Author:

Bastian J.

Abstract

Single neurons in the caudal lobe of the cerebellum of the weakly electric fish Apteronotus albifrons respond to distortions in the normal electric field produced by the animal. Moving plastic or metal objects as well as a simpler stimulus, a moving electrical dipole, produce adequate distortions of the fish's field to cause the cerebellar cells to respond. The moving dipole stimulated small enough areas of the fish's skin, as determined by the responses of single electroreceptors, to allow maps of the receptive fields of single cerebellar cells to be produced. The receptive fields seen varied widely in complexity from relatively small excitatory or inhibitory areas to larger fields containing multiple excitatory and inhibitory areas usually bordering one another. Most cells studied displayed directional responses. Usually qualitatively different responses resulted from opposite directions of movement, and less frequently units were seen in which no response resulted from movement opposite the direction which caused responses; Varying the rate of stimulus movement caused only small changes in the responses of cerebellar cells; however, motionless stimuli applied over areas of skin known to respond to moving stimuli produced weaker responses of the appropriate sign for that area. Movement seems to be an important component of the stimulus for these cells. Cells were also seen which responded to visual as well as to electroreceptive input. Responses to each of these two modalities presented above were quite different. The cells recorded from frequently displayed burst discharges similar to those produced by Purkinje cells in other lower vertebrates, and most of the cells studied are believed to be Purkinje cells. A somatotopic relationship was found between the position of the center of a receptive field on the fish's body and the position of the cell in the brain. All of the results obtained are compatible with the hypothesis that the caudal lobe of the cerebellum is processing electroreceptive information related to object detection.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3