Analysis of response properties of deefferented mammalian spindle receptors based on frequency response

Author:

Hasan Z.,Houk J. C.

Abstract

Sinusoidal responses of primary and secondary endings in deefferented spindles of anesthetized cats were studied over the low-frequency range 0.001-0.1 Hz. Stretch amplitudes were chosen conservatively small (25-100 mum peak-to-peak) so as to lie within the linear region. 1. At 0.1 Hz average sensitivity was 350 pps/mm for primary endings and 80 pps/mm for secondary endings. Sensitivity fell to lower values at lower frequencies, but even at 0.001 Hz, corresponding to 17 min/cycle, sensitivity remained elevated above static values determined with large stretches. Phase lead varied from 5 to 50 degrees and, in the case of primary endings, tended to be greater at lower frequencies. 2. Except for the different scaling factors, the only apparent difference between the frequency responses of primary and secondary endings was a tendency for primary endings to show a greater phase lead over the range 0.001-0.01 Hz. 3. Dynamic responsiveness was assessed theoretically from frequency-response data by calculating responses to ramps at various velocities. Over most of the velocity range dynamic responses were not proportional to velocity. The greater dynamic responsiveness of primary endings during large (6 mm) ramp stretches might be related to frequency response below 0.01 Hz. 4. Certain aspects of dynamic responsiveness to large ramps (6 mm) were accounted for by assuming all phases of responses were attenuated by 25 dB in the case of primary endings and 20 dB in the case of secondary endings. The nonlinearity responsible for attenuation appears to occur at an early stage in the sensory process. 5. Comparison of individual responses to slow ramps with predictions based on linear theory indicated the presence of abrupt departures from linearity for both primary and secondary endings.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 61 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3