Krüppel-like factor 4 regulates adaptive expression of the zinc transporter Zip4 in mouse small intestine

Author:

Liuzzi Juan P.,Guo Liang,Chang Shou-Mei,Cousins Robert J.

Abstract

Epithelial cells of the small intestine are the site of zinc absorption. Intestinal uptake of zinc is inversely proportional to the dietary supply of this essential micronutrient. The mechanism responsible for this adaptive differential in apical zinc transport is not known. The zinc transporter Zip4 ( Slc39a4) is essential for adequate enteric zinc uptake. In mice, Zip4 expression is upregulated at low zinc intakes with a concomitant ZIP4 localization to the apical enterocyte plasma membrane. With the present experiments, we show that the zinc finger transcription factor Krüppel-like factor 4 (KLF4), produced in high abundance in the intestine, is expressed at elevated levels in mice fed a low-zinc diet. In the murine intestinal epithelial cell (IEC) line MODE-K, zinc depletion of culture medium with cell-permeant and cell-impermeant chelators increased Zip4 and Klf4 mRNA and Zip4 heterogeneous nuclear RNA expression. Zinc depletion led to increased KLF4 in nuclear extracts. Knockdown of KLF4 using small interfering RNA transfection drastically limited ZIP4 induction upon zinc depletion and reduced 65Zn uptake by depleted IECs. EMSAs with nuclear extracts of IECs showed KLF4 binding to cis elements of the mouse Zip4 promoter, with increased binding under zinc-limited conditions. Reporter constructs with the Zip4 promoter and mutation studies further demonstrated that Zip4 is regulated through a KLF4 response element. These data from experiments with mice and murine IECs demonstrate that KLF4 is induced during zinc restriction and is a transcription factor involved in adaptive regulation of the zinc transporter ZIP4.

Publisher

American Physiological Society

Subject

Physiology (medical),Gastroenterology,Hepatology,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3