Ursodeoxycholic acid stimulates Nrf2-mediated hepatocellular transport, detoxification, and antioxidative stress systems in mice

Author:

Okada Kosuke,Shoda Junichi,Taguchi Keiko,Maher Jonathan M.,Ishizaki Kaoru,Inoue Yoshimi,Ohtsuki Makio,Goto Nobuharu,Takeda Koichi,Utsunomiya Hirotoshi,Oda Koji,Warabi Eiji,Ishii Tetsuro,Osaka Keiko,Hyodo Ichinosuke,Yamamoto Masayuki

Abstract

The protective action of ursodeoxycholic acid (UDCA) in cholestatic liver diseases may be mediated by choleresis, detoxification, and cytoprotection against oxidative stress. Nrf2, one transcription factor, serves as a cellular stress sensor and is a key regulator for hepatic induction of detoxifying enzymes, antioxidative stress genes, and numerous Mrp family members. We aimed to investigate whether UDCA induces hepatic Mrp expression along with that of detoxifying enzymes and antioxidative stress genes via the Nrf2 transcriptional pathway. The protein level, subcellular localization, and mRNA level of Mrp family members were assessed in livers of Keap1 gene-knockdown ( Keap1-kd) mice and those of UDCA-fed wild-type (WT) and Nrf2 gene-null ( Nrf2-null) mice. Nuclear levels of Nrf2 in livers of Keap1-kd mice markedly increased, resulting in constitutive activation of Nrf2. Keap1-kd mice have high-level expression of hepatic Mrp2, Mrp3, and Mrp4 relative to WT mice. UDCA potently increased nuclear Nrf2 expression level in livers of WT mice, and the treatment showed maximal hepatic induction of Mrp2, Mrp3, and Mrp4 in association with enhanced membranous localizations in an Nrf2-dependent manner. UDCA similarly increased nuclear Nrf2 expression level in rat hepatocytes. Chromatin immunoprecipitation assays using mouse hepatocytes revealed the binding of Nrf2 to antioxidant response elements in the promoter regions of Mrp2, Mrp3, and Mrp4. These findings demonstrate an important role of Nrf2 in the induction of Mrp family members in livers and suggest that a therapeutic mechanism of UDCA action is, via Nrf2 activation, a stimulation of detoxification and antioxidative stress systems, along with Mrp-mediated efflux transport.

Publisher

American Physiological Society

Subject

Physiology (medical),Gastroenterology,Hepatology,Physiology

Cited by 123 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3