Early rise in inflammation and microcirculatory disorder determine the development of autoimmune pancreatitis in the MRL/Mp-mouse

Author:

Sorg Heiko,Lorch Benjamin,Jaster Robert,Fitzner Brit,Ibrahim Saleh,Holzhueter Stephanie-Anna,Nizze Horst,Vollmar Brigitte

Abstract

Autoimmune pancreatitis (AIP) is a rare cause of chronic pancreatitis and mimics pancreatic cancer. Although there is strong interest in research, etiology and pathophysiology of AIP are still unknown. Therefore, we analyzed a total of 92 MRL/Mp-mice of either sex, which are prone to develop AIP, in four different age groups (8–12, 16–20, 24–28, and 32–40 wk). Using intravital fluorescence microscopy, histology, laboratory analysis, and Western blot, onset, severity, and pathophysiological mechanisms of AIP were evaluated. Female animals showed in vivo an age-dependent increase of intrapancreatic leukocyte accumulation, as well as a loss in functional capillary perfusion. In contrast, intrapancreatic inflammation in male mice was less pronounced and not age dependent. Furthermore, pancreatic tissue specimen of female animals exhibited major organ destruction with significantly higher values of mean pathological scores (1.5 ± 0.3 vs. ≤0.2; P < 0.05), as well as significantly increased CD4-, CD8-, CD11b-, and CD138-positive cells compared with male animals of the same age. Interestingly, there was a significant positive correlation between intravascular leukocyte adherence and the histopathological score of the pancreas, indicating a determining role of the innate immune system for the late onset of AIP. The present study shows that the onset of AIP is characterized by an inflammatory response and microcirculatory failure, most probably constituting initiators and propagators of this autoimmune disease.

Publisher

American Physiological Society

Subject

Physiology (medical),Gastroenterology,Hepatology,Physiology

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3