Author:
Béaslas Olivier,Torreilles François,Casellas Pierre,Simon Dominique,Fabre Gérard,Lacasa Michel,Delers François,Chambaz Jean,Rousset Monique,Carrière Véronique
Abstract
Intestine contributes to lipid homeostasis through the absorption of dietary lipids, which reach the apical pole of enterocytes as micelles. The present study aimed to identify the specific impact of these dietary lipid-containing micelles on gene expression in enterocytes. We analyzed, by microarray, the modulation of gene expression in Caco-2/TC7 cells in response to different lipid supply conditions that reproduced either the permanent presence of albumin-bound lipids at the basal pole of enterocytes or the physiological delivery, at the apical pole, of lipid micelles, which differ in their composition during the interprandial (IPM) or the postprandial (PPM) state. These different conditions led to distinct gene expression profiles. We observed that, contrary to lipids supplied at the basal pole, apical lipid micelles modulated a large number of genes. Moreover, compared with the apical supply of IPM, PPM specifically impacted 46 genes from three major cell function categories: signal transduction, lipid metabolism, and cell adhesion/architecture. Results from this first large-scale analysis underline the importance of the mode and polarity of lipid delivery on enterocyte gene expression. They demonstrate specific and coordinated transcriptional effects of dietary lipid-containing micelles that could impact the structure and polarization of enterocytes and their functions in nutrient transfer.
Publisher
American Physiological Society
Subject
Physiology (medical),Gastroenterology,Hepatology,Physiology
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献