Ostα-Ostβ is required for bile acid and conjugated steroid disposition in the intestine, kidney, and liver

Author:

Ballatori Nazzareno,Fang Fang,Christian Whitney V.,Li Na,Hammond Christine L.

Abstract

Mice deficient in the organic solute transporter (Ost)-α subunit of the heteromeric organic solute and steroid transporter, Ostα-Ostβ, were generated and were found to be viable and fertile but exhibited small intestinal hypertrophy and growth retardation. Bile acid pool size and serum levels were decreased by more than 60% in Ostα−/− mice, whereas fecal bile acid excretion was unchanged, suggesting a defect in intestinal bile acid absorption. In support of this hypothesis, when [3H]taurocholic acid or [3H]estrone 3-sulfate were administered into the ileal lumen, absorption was lower in Ostα−/− mice. Interestingly, serum cholesterol and triglyceride levels were also ∼15% lower in Ostα−/− mice, an effect that may be related to the impaired intestinal bile acid absorption. After intraperitoneal administration of [3H]estrone 3-sulfate or [3H]dehydroepiandrosterone sulfate, Ostα−/− mice had higher levels of radioactivity in their liver and urinary bladder and less in the duodenum, indicating altered hepatic, renal, and intestinal disposition. Loss of Ostα was associated with compensatory changes in the expression of several genes involved in bile acid homeostasis, including an increase in the multidrug resistance-associated protein 3, ( Mrp3)/ Abcc3, an alternate basolateral bile acid export pump, and a decrease in cholesterol 7α-hydroxylase, Cyp7a1, the rate-limiting enzyme in bile acid synthesis. The latter finding may be explained by increased ileal expression of fibroblast growth factor 15 ( Fgf15), a negative regulator of hepatic Cyp7a1 transcription. Overall, these findings provide direct support for the hypothesis that Ostα-Ostβ is a major basolateral transporter of bile acids and conjugated steroids in the intestine, kidney, and liver.

Publisher

American Physiological Society

Subject

Physiology (medical),Gastroenterology,Hepatology,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3