Glucagon-like peptide-2 relaxes mouse stomach through vasoactive intestinal peptide release

Author:

Amato Antonella,Baldassano Sara,Serio Rosa,Mulè Flavia

Abstract

Glucagon-like peptide-2 (GLP-2) influences different aspects of the gastrointestinal function, including epithelial growth, digestion, absorption, motility, and blood flow. Intraluminal pressure from isolated mouse stomach was recorded to investigate whether GLP-2 affects gastric tone and to analyze its mechanism of action. Regional differences between diverse parts of the stomach were also examined using circular muscular strips from fundus and antrum. In the whole stomach, GLP-2 (0.3–100 nM) produced concentration-dependent relaxation with a maximum that was about 75% of relaxation to 1 μM isoproterenol (IC50 = 2.5 nM). This effect was virtually abolished by desensitization of GLP-2 receptors or by α-chymotrypsin. The relaxant response to GLP-2 was not affected by tetrodotoxin, a blocker of neuronal voltage-dependent Na+ channels, but it was significantly reduced by ω-conotoxin GVIA, a blocker of neuronal N-type voltage-operated Ca2+ channels. Nω-nitro-l-arginine methyl ester, a blocker of nitric oxide synthase, or apamin, a blocker of Ca2+-dependent potassium channels, failed to affect the gastric response to the peptide. However, the relaxation was significantly antagonized by [Lys1,Pro2,5,Arg3,4,Tyr6]VIP7–28, a vasoactive intestinal peptide (VIP) receptor antagonist (GLP-2 maximum effect = 45% of relaxation to 1 μM isoproterenol), and virtually abolished by desensitization of the VIP receptors. GLP-2 induced concentration-dependent relaxation in carbachol-precontracted fundic strips but not in antral strips. These results provide the first experimental evidence that GLP-2 is able to induce gastric relaxation acting peripherally on the mouse stomach. The effect appears to be mediated by prejunctional neural release of VIP and confined to fundic region.

Publisher

American Physiological Society

Subject

Physiology (medical),Gastroenterology,Hepatology,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3