Affiliation:
1. Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio 44106
Abstract
We studied the forces produced at the cat's hindpaw by microstimulation of the ipsi- and contralateral lumbar spinal cord in spinal intact α-chloralose anesthetized ( n = 3) or decerebrate ( n = 3) animals. Isometric force and EMG responses were measured at 9-12 limb configurations, with the paw attached to a force transducer and with the hip and femur fixed. The active forces elicited at different limb configurations were summarized as force fields representing the sagittal plane component of the forces produced at the paw throughout the workspace. The forces varied in amplitude over time but the orientations were stable, and the pattern of an active force field was invariant through time. The active force fields divided into four distinct types, and a few of the fields showed convergence to an equilibrium point. The fields were generally produced by coactivation of the hindlimb muscles. In addition, some of the fields were consistent with known spinal reflexes and the stimulation sites producing them were in laminae where the interneurons associated with those reflexes are known to be located. Muscle activation produced by intraspinal stimulation, as assessed by intramuscular EMG activity, was modified with limb configuration, suggesting that the responses were not fixed, but were modified by position-dependent sensory feedback. The force responses may represent basic outputs of the spinal circuitry and may be related to similar spinal primitives found in the frog and rat.
Publisher
American Physiological Society
Subject
Physiology,General Neuroscience
Reference40 articles.
1. Stimulation of pre- and postsynaptic elements in the red nucleus
2. Tapping into spinal circuits to restore motor function
3. Reference Frames for Spinal Proprioception: Limb Endpoint Based or Joint-Level Based?
4. Anatomy of medial gastrocnemius and soleus motor nuclei in cat spinal cord
5. Giszter SF, Grill WM, Lemay MA, Mushahwar V, and Prochazka A. Intraspinal microstimulation: techniques, perspectives and prospects for FES. In: Neural Prostheses for Restoration of Sensory and Motor Function, edited by Chapin JK and Moxon KA. Boca Raton, FL: CRC, 2001, p. 101-138.
Cited by
101 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献