Visuomotor learning is dependent on direction-specific error saliency

Author:

Jiang Wanying123,Yuan Xianzhi412,Yin Cong5,Wei Kunlin4123

Affiliation:

1. Beijing Key Laboratory of Behavior and Mental Health, Beijing, China

2. Key Laboratory of Machine Perception, Ministry of Education, Beijing, China

3. Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China

4. School of Psychological and Cognitive Sciences, Peking University, Beijing, China

5. Capital University of Physical Education and Sports, Beijing, China

Abstract

People perceive better in cardinal directions compared with oblique ones. This directional effect, called oblique effect, has been documented in perception studies for a long time. However, typical motor studies do not differentiate learning in different directions. In this study we identify a significant directional effect in motor learning using visuomotor rotation paradigms. We find that adaptation to visual perturbations yields more savings when both initial learning and relearning are performed in cardinal directions than in oblique directions. We hypothesize that this directional effect arises from relatively higher error saliency in cardinal directions. Consistent with this hypothesis, we successfully increased savings in the oblique directions, which showed no saving effect before, by enhancing the error saliency with augmented visual feedback during learning. Our findings suggest that movement direction plays an important role in motor learning, especially when learning signals are direction specific. Our results also provide new insights about the role of motor errors in the formation and retrieval of motor memory and practical implications for promoting learning in motor rehabilitation and athletic training. NEW & NOTEWORTHY People perceive better when the stimulus is in cardinal directions than in oblique directions. Whether a similar directional effect exists in motor learning is unknown. Using a motor learning paradigm, we show that people relearn to compensate for a previously encountered perturbation faster when they move in cardinal directions than when they move in oblique directions. Further experimentation supports that this motor directional effect likely results from better sensory saliency of motor errors in cardinal directions.

Funder

National Natural Science Foundation of China (NSFC)

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3