Combining biophysical modeling and deep learning for multielectrode array neuron localization and classification

Author:

Buccino Alessio P.12ORCID,Kordovan Michael34,Ness Torbjørn V.5,Merkt Benjamin34,Häfliger Philipp D.1,Fyhn Marianne1,Cauwenberghs Gert2,Rotter Stefan34,Einevoll Gaute T.15ORCID

Affiliation:

1. Center for Integrative Neuroplasticity (CINPLA), Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway

2. Department of Bioengineering, University of California, San Diego, California

3. Bernstein Center Freiburg, Freiburg, Germany

4. Faculty of Biology, University of Freiburg, Freiburg, Germany

5. Faculty of Science and Technology, Norwegian University of Life Sciences, Ås, Norway

Abstract

Neural circuits typically consist of many different types of neurons, and one faces a challenge in disentangling their individual contributions in measured neural activity. Classification of cells into inhibitory and excitatory neurons and localization of neurons on the basis of extracellular recordings are frequently employed procedures. Current approaches, however, need a lot of human intervention, which makes them slow, biased, and unreliable. In light of recent advances in deep learning techniques and exploiting the availability of neuron models with quasi-realistic three-dimensional morphology and physiological properties, we present a framework for automatized and objective classification and localization of cells based on the spatiotemporal profiles of the extracellular action potentials recorded by multielectrode arrays. We train convolutional neural networks on simulated signals from a large set of cell models and show that our framework can predict the position of neurons with high accuracy, more precisely than current state-of-the-art methods. Our method is also able to classify whether a neuron is excitatory or inhibitory with very high accuracy, substantially improving on commonly used clustering techniques. Furthermore, our new method seems to have the potential to separate certain subtypes of excitatory and inhibitory neurons. The possibility of automatically localizing and classifying all neurons recorded with large high-density extracellular electrodes contributes to a more accurate and more reliable mapping of neural circuits. NEW & NOTEWORTHY We propose a novel approach to localize and classify neurons from their extracellularly recorded action potentials with a combination of biophysically detailed neuron models and deep learning techniques. Applied to simulated data, this new combination of forward modeling and machine learning yields higher performance compared with state-of-the-art localization and classification methods.

Funder

Norwegian Ministry of Education and Research

German Research Foundation

European Union's Seventh Framework Programme

European Union Horizon 2020 Research and Innovation Programme

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3