Ampakine CX717 potentiates intermittent hypoxia-induced hypoglossal long-term facilitation

Author:

Turner S. M.123,ElMallah M. K.4,Hoyt A. K.1,Greer J. J.5,Fuller D. D.123

Affiliation:

1. Department of Physical Therapy, College of Public Health and Health Professions, University of Florida, Gainesville, Florida;

2. McKnight Brain Institute, University of Florida, Gainesville, Florida; and

3. Center for Respiratory Research and Rehabilitation, University of Florida, Gainesville, Florida

4. Department of Pediatrics, Division of Pulmonary Medicine, College of Medicine, University of Florida, Gainesville, Florida;

5. Department of Physiology, University of Alberta, Edmonton, Canada;

Abstract

Glutamatergic currents play a fundamental role in regulating respiratory motor output and are partially mediated by α-amino-3-hydroxy-5-methyl-isoxazole-propionic acid (AMPA) receptors throughout the premotor and motor respiratory circuitry. Ampakines are pharmacological compounds that enhance glutamatergic transmission by altering AMPA receptor channel kinetics. Here, we examined if ampakines alter the expression of respiratory long-term facilitation (LTF), a form of neuroplasticity manifested as a persistent increase in inspiratory activity following brief periods of reduced O2 [intermittent hypoxia (IH)]. Current synaptic models indicate enhanced effectiveness of glutamatergic synapses after IH, and we hypothesized that ampakine pretreatment would potentiate IH-induced LTF of respiratory activity. Inspiratory bursting was recorded from the hypoglossal nerve of anesthetized and mechanically ventilated mice. During baseline (BL) recording conditions, burst amplitude was stable for at least 90 min (98 ± 5% BL). Exposure to IH (3 × 1 min, 15% O2) resulted in a sustained increase in burst amplitude (218 ± 44% BL at 90 min following final bout of hypoxia). Mice given an intraperitoneal injection of ampakine CX717 (15 mg/kg) 10 min before IH showed enhanced LTF (500 ± 110% BL at 90 min). Post hoc analyses indicated that CX717 potentiated LTF only when initial baseline burst amplitude was low. We conclude that under appropriate conditions ampakine pretreatment can potentiate IH-induced respiratory LTF. These data suggest that ampakines may have therapeutic value in the context of hypoxia-based neurorehabilitation strategies, particularly in disorders with blunted respiratory motor output such as spinal cord injury.

Funder

HHS | NIH | National Heart, Lung, and Blood Institute (NHBLI)

Craig H. Neilsen Foundation

Canadian Institute for Health Research

State of Florida Brain and Spinal Cord Injury Research Trust

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3