Afferent Regulation of Leg Motor Cortex Excitability After Incomplete Spinal Cord Injury

Author:

Roy François D.1,Yang Jaynie F.2,Gorassini Monica A.1

Affiliation:

1. Departments of Biomedical Engineering and

2. Physical Therapy, Centre for Neuroscience, University of Alberta, Edmonton, Alberta, Canada

Abstract

An incomplete spinal cord injury (SCI) impairs neural conduction along spared ascending sensory pathways to disrupt the control of residual motor movements. To characterize how SCI affects the activation of the motor cortex by spared ascending sensory pathways, we examined how stimulation of leg afferents facilitates the excitability of the motor cortex in subjects with incomplete SCI. Homo- and heteronymous afferents to the tibialis anterior (TA) representation in the motor cortex were electrically stimulated, and the responses were compared with uninjured controls. In addition, we examined if cortical excitability could be transiently increased by repetitively pairing stimulation of spared ascending sensory pathways with transcranial magnetic stimulation (TMS), an intervention termed paired associative stimulation (PAS). In uninjured subjects, activating the tibial nerve at the ankle 45–50 ms before a TMS pulse in a conditioning-test paradigm facilitated the motor-evoked potential (MEP) in the heteronymous TA muscle by twofold on average. In contrast, prior tibial nerve stimulation did not facilitate the TA MEP in individuals with incomplete SCI ( n = 8 SCI subjects), even in subjects with less severe injuries. However, we provide evidence that ascending sensory inputs from the homonymous common peroneal nerve (CPN) can, unlike the heteronymous pathways, facilitate the motor cortex to modulate the TA MEP ( n = 16 SCI subjects) but only in subjects with less severe injuries. Finally, by repetitively coupling CPN stimulation with coincident TA motor cortex activation during PAS, we show that 7 of 13 SCI subjects produced appreciable (>20%) facilitation of the MEP following the intervention. The increase in corticospinal tract excitability by PAS was transient (<20 min) and tended to be more prevalent in SCI subjects with stronger functional ascending sensory pathways.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3