Antibodies as molecular mimics of biomolecules: roles in understanding physiological functions and mechanisms

Author:

Hill Rodney A.1,Flint David J.2,Pell Jennifer M.3

Affiliation:

1. Department of Animal and Veterinary Science, University of Idaho, Moscow, Idaho

2. Strathclyde Institute of Pharmacy and Biomedical Science, University of Strathclyde, Glasgow

3. The Babraham Institute, Cambridge, United Kingdom

Abstract

Physiologists have routinely used understanding of the immune system to generate antibodies against regulatory molecules, growth factors, plasma membrane receptors, and other mammalian molecules in the development of analytical tools and assays. In taking this notion further, antibodies have been used in vivo to modulate physiological systems and to improve our understanding of their molecular interactions. To develop antibodies with physiological activity (efficacy), physiologists have worked with immunologists in developing interdisciplinary insights, requiring basic knowledge of immune system function in designing strategies to generate antibodies that interact with endogenous molecules of physiological interest, in vivo. Antibodies in different physiological systems have been shown to enhance or inhibit endogenous molecular functions. Two approaches have been used: passive and active immunization. Antibodies in these contexts have provided tools to develop further insights into molecular physiological mechanisms. Perhaps surprisingly, enhancing antibodies have been developed against a diverse set of target molecules including several members of the growth hormone/insulin-like growth factor-I axes and those of the β2-adrenoceptor axis. Antibodies that inhibit the actions of somatostatin have also been developed. A further novel approach has been the development of antibodies that interact with adipose cells in vivo. These have the potential to be used in therapeutic antiobesity approaches. Antibodies with efficacy in vivo have provided new insights into molecular physiological mechanisms, enhancing our understanding of these complex processes.

Publisher

American Physiological Society

Subject

General Medicine,Physiology,Education

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3