Encoding of Probabilistic Rewarding and Aversive Events by Pallidal and Nigral Neurons

Author:

Joshua Mati,Adler Avital,Rosin Boris,Vaadia Eilon,Bergman Hagai

Abstract

Previous studies have rarely tested whether the activity of high-frequency discharge (HFD) neurons of the basal ganglia (BG) is modulated by expectation, delivery, and omission of aversive events. Therefore the full value domain encoded by the BG network is still unknown. We studied the activity of HFD neurons of the globus pallidus external segment (GPe, n = 310), internal segment (GPi, n = 149), and substantia nigra pars reticulata (SNr, n = 145) in two monkeys during a classical conditioning task with cues predicting the probability of food, neutral, or airpuff outcomes. The responses of BG HFD neurons were long-lasting and diverse with coincident increases and decreases in discharge rate. The population responses to reward-related events were larger than the responses to aversive and neutral-related events. The latter responses were similar, except for the responses to actual airpuff delivery. The fraction of responding cells was larger for reward-related events, with better discrimination between rewarding and aversive trials in the responses with an increase rather than a decrease in discharge rate. GPe and GPi single units were more strongly modulated and better reflected the probability of reward- than aversive-related events. SNr neurons were less biased toward the encoding of the rewarding events, especially during the outcome epoch. Finally, the latency of SNr responses to all predictive cues was shorter than the latency of pallidal responses. These results suggest preferential activation of the BG HFD neurons by rewarding compared with aversive events.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3