Serotonin Activates Presynaptic and Postsynaptic Receptors in Rat Globus Pallidus

Author:

Hashimoto Kenji,Kita Hitoshi

Abstract

Although recent histological, behavioral, and clinical studies suggest that serotonin (5-HT) plays significant roles in the control of pallidal activity, only little is known about the physiological action of 5-HT in the pallidum. Our recent unit recording study in monkeys suggested that 5-HT provides both presynaptic and postsynaptic modulations of pallidal neurons. The present study using rat brain slice preparations further explored these presynaptic and postsynaptic actions of 5-HT. Bath application of 5-HT or the 5-HT1A/1B/1D/5/7 receptor (R) agonist 5-carboxamidotryptamine maleate (5-CT) depolarized some and hyperpolarized other pallidal neurons. Pretreatments of slices with blockers of the hyperpolarization–cyclic nucleotide-activated current or with the 5-HT2/7R–selective antagonist mesulergine occluded 5-CT–induced depolarization. The 5-HT1AR–selective blocker N-[2[4-(2-methoxyphenyl)-1-piperazinyl]ethyl]- N-2-pyridinylcyclohex- anecarboxamide maleate occluded the 5-CT–induced hyperpolarization. These results suggested involvement of 5-HT7R and 5-HT1AR in the postsynaptic depolarization and hyperpolarization, respectively. 5-CT presynaptically suppressed both internal capsule stimulation–induced excitatory postsynaptic currents (EPSCs) and striatal stimulation–induced inhibitory postsynaptic currents (IPSCs). The potencies of 5-CT on the presynaptic effects were 20- to 25-fold higher than on postsynaptic effects, suggesting that 5-HT mainly modulates presynaptic sites in the globus pallidus. Experiments with several antagonists suggested involvement of 5-HT1B/DR in the presynaptic suppression of EPSCs. However, the receptor type involved in the presynaptic suppression of IPSCs was inconclusive. The present results provided evidence that 5-HT exerts significant control over the synaptic inputs and the autonomous activity of pallidal neurons.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Reference68 articles.

1. Appel NM, Mitchell WM, Garlick RK, Glennon RA, Teitler M, De Souza EB. Autoradiographic characterization of (±)-1-(2,5-dimethoxy-4-[125I] iodophenyl)-2-aminopropane ([125I]DOI) binding to 5-HT2 and 5-HT1c receptors in rat brain. J Pharmacol Exp Ther 255: 843–857, 1990.

2. Increased gastric motility during 5-HT4 agonist therapy reduces response fluctuations in Parkinson's disease

3. Effects of serotonin 5-HT1A agonist in advanced Parkinson's disease

4. Opposing Electrophysiological Actions of 5-HT on Noncholinergic and Cholinergic Neurons in the Rat Ventral Pallidum In Vitro

5. Physiological aspects of information processing in the basal ganglia of normal and parkinsonian primates

Cited by 34 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Connectivity and Functionality of the Globus Pallidus Externa Under Normal Conditions and Parkinson's Disease;Frontiers in Neural Circuits;2021-03-02

2. The 5-HT1B receptor - a potential target for antidepressant treatment;Psychopharmacology;2018-03-15

3. 5-HT2A Receptors in the Basal Ganglia;5-HT2A Receptors in the Central Nervous System;2018

4. Role of Serotonin-2A Receptors in Pathophysiology and Treatment of Depression;5-HT2A Receptors in the Central Nervous System;2018

5. Brain Distribution;5-HT2A Receptors in the Central Nervous System;2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3