Author:
Niven Jeremy E.,Vähäsöyrinki Mikko,Juusola Mikko,French Andrew S.
Abstract
Voltage-gated K+channels are important in neuronal signaling, but little is known of their interactions with receptor currents or their behavior during natural stimulation. We used nonparametric and parametric nonlinear modeling of experimental responses, combined with Hodgkin–Huxley style simulation, to examine the roles of K+channels in forming the responses of wild-type (WT) and Shaker mutant ( Sh14) Drosophila photoreceptors to naturalistic stimulus sequences. Naturalistic stimuli gave results different from those of similar experiments with white noise stimuli. Sh14responses were larger and faster than WT. Simulation indicated that, in addition to eliminating the Shaker current, the mutation changed the current flowing through light-dependent channels [light-induced current (LIC)] and increased the delayed rectifier current. Part of the change in LIC could be attributed to direct feedback from the voltage-sensitive ion channels to the light-sensitive channels by the membrane potential. However, we argue that other changes occur in the light detecting machinery of Sh14mutants, possibly during photoreceptor development.
Publisher
American Physiological Society
Subject
Physiology,General Neuroscience
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献