Integration of the Reflex Pharyngeal Swallow Into Rhythmic Oral Activity in a Neurologically Intact Pig Model

Author:

German Rebecca Z.,Crompton A. W.,Thexton Allan J.

Abstract

Mammalian swallowing involves the coordinated and sequential activity of many oropharyngeal muscles. Using synchronous electromyography (EMG) and videofluorography, we recorded the pattern of EMG activity for 12 muscles during swallowing in neurologically intact suckling pigs. We tested the hypothesis that this EMG pattern corresponded to the established pattern of activity for the isolated, reflexive pharyngeal swallow of the decerebrate infant pig. The EMG activity associated with the normal swallow of the intact animal had two components: a staggered pattern of single EMG bursts that were prominent in the stylohyoid, thyrohyoid, cricothyroid, and omohyoid muscles and double bursts of activity in some muscles, including geniohyoid and genioglossus, with the same underlying periodicity as suckling. Most of the staggered activity pattern, a linear sequence of progressively delayed activities in different muscles, was not statistically different from that previously found in the reflexive pharyngeal swallow of the decerebrate. However, not all components of the linear sequence of the reflexive swallow were inserted unchanged into the intact swallow. Some components appeared to be delayed or advanced, bringing them into phase with the underlying rhythmic activity. The difference between swallows of intact and of decerebrate animals was not solely due to the presence of rhythmic activity in the former. The timing of some EMG activities in intact animals also differed from the same activities in the few decerebrates that exhibited rhythmic tongue and jaw activity. These results suggest cerebral function influences the EMG pattern of the pharyngeal swallow, which has traditionally been considered a purely reflex pattern.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 62 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3