Cycle-by-cycle assembly of respiratory network activity is dynamic and stochastic

Author:

Carroll Michael S.1,Ramirez Jan-Marino12

Affiliation:

1. Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington; and

2. Departments of Neurological Surgery, Pediatrics, Physiology, and Biophysics, University of Washington School of Medicine, Seattle, Washington

Abstract

Rhythmically active networks are typically composed of neurons that can be classified as silent, tonic spiking, or rhythmic bursting based on their intrinsic activity patterns. Within these networks, neurons are thought to discharge in distinct phase relationships with their overall network output, and it has been hypothesized that bursting pacemaker neurons may lead and potentially trigger cycle onsets. We used multielectrode recording from 72 experiments to test these ideas in rhythmically active slices containing the pre-Bötzinger complex, a region critical for breathing. Following synaptic blockade, respiratory neurons exhibited a gradient of intrinsic spiking to rhythmic bursting activities and thus defied an easy classification into bursting pacemaker and nonbursting categories. Features of their firing activity within the functional network were analyzed for correlation with subsequent rhythmic bursting in synaptic isolation. Higher firing rates through all phases of fictive respiration statistically predicted bursting pacemaker behavior. However, a cycle-by-cycle analysis indicated that respiratory neurons were stochastically activated with each burst. Intrinsically bursting pacemakers led some population bursts and followed others. This variability was not reproduced in traditional fully interconnected computational models, while sparsely connected network models reproduced these results both qualitatively and quantitatively. We hypothesize that pacemaker neurons do not act as clock-like drivers of the respiratory rhythm but rather play a flexible and dynamic role in the initiation and stabilization of each burst. Thus, at the behavioral level, each breath can be thought of as de novo assembly of a stochastic collaboration of network topology and intrinsic properties.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3