Impact of spatiotemporal calcium dynamics within presynaptic active zones on synaptic delay at the frog neuromuscular junction

Author:

Homan Anne E.1,Laghaei Rozita2,Dittrich Markus3,Meriney Stephen D.1

Affiliation:

1. Department of Neuroscience, Center for Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania

2. Biomedical Applications Group, Pittsburgh Supercomputing Center, Carnegie Mellon University, Pittsburgh, Pennsylvania

3. BioTeam Incorporated, Middleton, Massachusetts

Abstract

The spatiotemporal calcium dynamics within presynaptic neurotransmitter release sites (active zones, AZs) at the time of synaptic vesicle fusion is critical for shaping the dynamics of neurotransmitter release. Specifically, the relative arrangement and density of voltage-gated calcium channels (VGCCs) as well as the concentration of calcium buffering proteins can play a large role in the timing, magnitude, and plasticity of release by shaping the AZ calcium profile. However, a high-resolution understanding of the role of AZ structure in spatiotemporal calcium dynamics and how it may contribute to functional heterogeneity at an adult synapse is currently lacking. We demonstrate that synaptic delay varies considerably across, but not within, individual synapses at the frog neuromuscular junction (NMJ). To determine how elements of the AZ could contribute to this variability, we performed a parameter search using a spatially realistic diffusion reaction-based computational model of a frog NMJ AZ (Dittrich M, Pattillo JM, King JD, Cho S, Stiles JR, Meriney SD. Biophys J 104: 2751–2763, 2013; Ma J, Kelly L, Ingram J, Price TJ, Meriney SD, Dittrich M. J Neurophysiol 113: 71–87, 2015). We demonstrate with our model that synaptic delay is sensitive to significant alterations in the spatiotemporal calcium dynamics within an AZ at the time of release caused by manipulations of the density and organization of VGCCs or by the concentration of calcium buffering proteins. Furthermore, our data provide a framework for understanding how AZ organization and structure are important for understanding presynaptic function and plasticity. NEW & NOTEWORTHY The structure of presynaptic active zones (AZs) can play a large role in determining the dynamics of neurotransmitter release across many model preparations by influencing the spatiotemporal calcium dynamics within the AZ at the time of vesicle fusion. However, less is known about how different AZ structural schemes may influence the timing of neurotransmitter release. We demonstrate that variations in AZ structure create different spatiotemporal calcium profiles that, in turn, lead to differences in synaptic delay.

Funder

HHS | NIH | National Institute of Neurological Disorders and Stroke (NINDS)

National Science Foundation (NSF)

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3