Contrasting Roles of Protein Kinase C in Induction Versus Suppression of Group I mGluR-Mediated Epileptogenesis In Vitro

Author:

Cuellar John C.,Griffith Elvin L.,Merlin Lisa R.

Abstract

Activation of group I metabotropic glutamate receptors (mGluRs) elicits persistent ictaform discharges in guinea pig hippocampal slices, providing an in vitro model of epileptogenesis. The induction of these persistent ictaform bursts is prevented by l-cysteine sulfinic acid (CSA), an agonist at phospholipase D (PLD)–coupled mGluRs. Studies described herein examined the role of protein kinase C (PKC) in both the group I mGluR–mediated induction and CSA-mediated suppression of this form of epileptogenesis. Intracellular recordings were performed from CA3 stratum pyramidale and synchronized burst length was monitored. In the presence of 50 μM picrotoxin, a γ-aminobutyric acid type A antagonist, 250- to 500-ms synchronized bursts were elicited. ( S)-3,5-Dihydroxyphenylglycine (DHPG, 50 μM), an agonist at group I mGluRs, increased the burst length to 1–3 s in duration, a change that persisted after agonist washout. This persistent change in burst length was elicited in the presence of 10 μM chelerythrine, a PKC inhibitor, indicating that DHPG-induced epileptogenesis is PKC independent. However, although PLD activation with CSA (100 μM) was highly effective at suppressing group I mGluR–mediated induction of burst prolongation, CSA application in the presence of chelerythrine was no longer effective and resulted in the expression of persistent ictaform bursts. These data suggest that CSA-mediated suppression of group I mGluR–induced epileptogenesis is PKC dependent. We propose that CSA mediates its effect by PLD-driven activation of PKC, which may desensitize the phospholipase C–linked group I mGluRs and thereby prevent group I mGluR–induced epileptogenesis.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3