Experimentally Confirmed Mathematical Model for Human Control of a Non-Rigid Object

Author:

Dingwell Jonathan B.,Mah Christopher D.,Mussa-Ivaldi Ferdinando A.

Abstract

Determining the principles used to plan and execute movements is a fundamental question in neuroscience research. When humans reach to a target with their hand, they exhibit stereotypical movements that closely follow an optimally smooth trajectory. Even when faced with various perceptual or mechanical perturbations, subjects readily adapt their motor output to preserve this stereotypical trajectory. When humans manipulate non-rigid objects, however, they must control the movements of the object as well as the hand. Such tasks impose a fundamentally different control problem than that of moving one's arm alone. Here, we developed a mathematical model for transporting a mass-on-a-spring to a target in an optimally smooth way. We demonstrate that the well-known “minimum-jerk” model for smooth reaching movements cannot accomplish this task. Our model extends the concept of smoothness to allow for the control of non-rigid objects. Although our model makes some predictions that are similar to minimum jerk, it predicts distinctly different optimal trajectories in several specific cases. In particular, when the relative speed of the movement becomes fast enough or when the object stiffness becomes small enough, the model predicts that subjects will transition from a uni-phasic hand motion to a bi-phasic hand motion. We directly tested these predictions in human subjects. Our subjects adopted trajectories that were well-predicted by our model, including all of the predicted transitions between uni- and bi-phasic hand motions. These findings suggest that smoothness of motion is a general principle of movement planning that extends beyond the control of hand trajectories.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 66 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3