Spatial Organization of Receptive Fields of V1 Neurons of Alert Monkeys: Comparison With Responses to Gratings

Author:

Kagan Igor1,Gur Moshe12,Snodderly D. Max234

Affiliation:

1. Department of Biomedical Engineering, Technion, Israel Institute of Technology, Haifa 32000, Israel;

2. Schepens Eye Research Institute, Boston, Massachusetts 02114; and

3. Department of Ophthalmology, and

4. Program in Neuroscience, Harvard Medical School, Boston, Massachusetts 02115

Abstract

We studied the spatial organization of receptive fields and the responses to gratings of neurons in parafoveal V1 of alert monkeys. Activating regions (ARs) of 228 cells were mapped with increment and decrement bars while compensating for fixational eye movements. For cells with two or more ARs, the overlap between ARs responsive to increments (INC) and ARs responsive to decrements (DEC) was characterized by a quantitative overlap index (OI). The distribution of overlap indices was bimodal. The larger group (78% of cells) was composed of complex cells with strongly overlapping ARs (OI ≥ 0.5). The smaller group (14%) was composed of simple cells with minimal spatial overlap of ARs (OI ≤ 0.3). Simple cells were preferentially located in layers dominated by the magnocellular pathway. A third group of neurons, the monocontrast cells (8%), responded only to one sign of contrast and had more sustained responses to flashed stimuli than other cells. One hundred fourteen neurons were also studied with drifting sinusoidal gratings of various spatial frequencies and window widths. For complex cells, the relative modulation (RM, the ratio of the 1st harmonic to the mean firing rate), ranged from 0.6 ± 0.4 to 1.1 ± 0.5 (mean ± SD), depending on the stimulus conditions and the mode of correction for eye movements. RM was not correlated with the degree of overlap of ARs, indicating that the spatial organization of receptive fields cannot reliably be predicted from RM values. In fact, a subset of complex cells had RM > 1, the traditional criterion for identifying simple cells. However, unlike simple cells, even those complex cells with high RM could exhibit diverse nonlinear responses when the spatial frequency or window size was changed. Furthermore, the responses of complex cells to counterphase gratings were predominantly nonlinear even harmonics. These results show that RM is not a robust test of linearity. Our results indicate that complex cells are the most frequently encountered neurons in primate V1, and their behavior needs to receive more emphasis in models of visual function.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 70 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3