Pontine Omnipause Activity During Conjugate and Disconjugate Eye Movements in Macaques

Author:

Busettini C.1,Mays L. E.1

Affiliation:

1. Department of Physiological Optics and Vision Science Research Center, University of Alabama at Birmingham, Birmingham, Alabama 35294

Abstract

Previous reports have shown that saccades executed during vergence eye movements are often slower and longer than conjugate saccades. Lesions in the nucleus raphe interpositus, where pontine omnipause neurons (OPNs) are located, were also shown to result in slower and longer saccades. If vergence transiently suppresses the activity of the OPNs just before a saccade, then reduced presaccadic activity might mimic the behavioral effects of a lesion. To test this hypothesis, 64 OPNs were recorded from 7 alert rhesus monkeys during smooth vergence and saccades with and without vergence. The firing rate of many OPNs was modulated by static vergence angle but not by version and showed transient changes during slow vergence without saccades. This modulation was smooth, and not the abrupt pause seen for saccades, indicating that OPNs do not act as gates for vergence commands. We confirmed that saccades made during both convergence and divergence are significantly slower and longer than conjugate saccades. OPNs paused for all saccades, and the pause lead (interval between pause onset and saccadic onset) was significantly longer for saccades with convergence, in agreement with our hypothesis. Contrary to our hypothesis, pause lead was not longer for saccades with divergence, even though these saccades were slowed as much as those occurring during convergence. Furthermore, there was no significant correlation, on a trial-by-trial basis, between pause lead and saccadic slowing. These results suggest that it is unlikely that presaccadic slowing of OPNs is responsible for the slower saccades seen during vergence movements.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Reference51 articles.

1. MICROSACCADIC FLUTTER

2. Opsoclonus

3. Becker W. The neurobiology of saccadic eye movements. Metrics. Rev Oculomot Res 3: 13–67, 1989.

4. Becker W, King WM, Fuchs AF, Jürgens R, Johanson G, and Kornhuber HH. Accuracy of goal-directed saccades and mechanisms of error correction. In: Progress in Oculomotor Research, edited by Fuchs AF and Becker W. Amsterdam: Elsevier, 1981, p. 29–37.

5. Busettini C and Mays LE. Vergence sensitivity of saccadic omnipause neurons in monkeys. Soc Neurosci Abstr 25: 1400, 1999.

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3