Voltage-Gated Outward K Currents in Frog Saccular Hair Cells

Author:

Catacuzzeno Luigi1,Fioretti Bernard1,Franciolini Fabio1

Affiliation:

1. Dipartimento di Biologia Cellulare e Molecolare, Università di Perugia, I-06123 Perugia, Italy

Abstract

A biophysical analysis of the voltage-gated K (Kv) currents of frog saccular hair cells enzymatically isolated with bacterial protease VIII was carried out, and their contribution to the cell electrical response was addressed by a modeling approach. Based on steady-state and kinetic properties of inactivation, two distinct Kv currents were found: a fast inactivating IA and a delayed rectifier IDRK. IA exhibited a strongly hyperpolarized inactivation V1/2 (-83 mV), a relatively rapid single exponential recovery from inactivation (τrec of ∼100 ms at -100 mV), and fast activation and deactivation kinetics. IDRK showed instead a less-hyperpolarized inactivation V1/2 (-48 mV), a slower, double-exponential recovery from inactivation (τrec1 ∼ 490 ms and τrec2 ∼ 4,960 ms at -100 mV), and slower activation and deactivation kinetics. Steady-state activation gave a V1/2 and a k of -46.2 and 8.2 mV for IA and -48.3 and 4.2 mV for IDRK. Both currents were not appreciably blocked by bath application of 10 mM TEA, but were inhibited by 4-AP, with IDRK displaying a higher sensitivity. IDRK also showed a relatively low affinity to linopirdine, being half blocked at ∼50 μM. Steady-state and kinetic properties of IDRK and IA were described by 2nd- and 3rd-order Hodgkin–Huxley models, respectively. The goodness of our quantitative description of the Kv currents was validated by including IA and IDRK in a theoretical model of saccular hair cell electrical activity and by comparing the simulated responses with those obtained experimentally. This thorough description of the IDRK and IA will contribute toward understanding the role of these currents in the electrical response on this preparation.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3