Creation and Reduction of a Morphologically Detailed Model of a Leech Heart Interneuron

Author:

Tobin Anne-Elise,Van Hooser Stephen D.,Calabrese Ronald L.

Abstract

Conductance-based neuron models aid in understanding the role intrinsic and synaptic currents play in producing neuronal activity. Incorporating morphological detail into a model allows for additional analysis of nonhomogeneous distributions of active and synaptic conductances, as well as spatial segregation of electrical events. We developed a morphologically detailed “Full Model” of a leech heart interneuron that replicates reasonably well intracellular recordings from these interneurons. However, it constitutes hundreds of compartments, each increasing parameter space and simulation time. To reduce the number of compartments of the Full Model, while preserving conductance densities and distributions, its compartments were grouped into functional groups that each share identical conductance densities. Each functional group was sequentially reduced to one or two compartments, preserving surface area, conductance densities, and its contribution to input resistance. As a result, the input resistance and membrane time constant were preserved. The axial resistances of several compartments were rescaled to match the amplitude of synaptic currents and low-threshold calcium currents and the shape of action potentials to those in the Full Model. This reduced model, with intrinsic conductances, matched the activity of the Full Model for a variety of simulated current-clamp and voltage-clamp data. Because surface area and conductance distribution of the functional groups of the Full Model were maintained, parameter changes introduced into the reduced model can be directly translated to the Full Model. Thus our computationally efficient reduced morphology model can be used as a tool for exploring the parameter space of the Full Model and in network simulations.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 33 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3