Strategies that simplify the control of quadrupedal stance. I. Forces at the ground

Author:

Macpherson J. M.1

Affiliation:

1. Department of Anatomy, Queen's University, Kingston, Ontario,Canada.

Abstract

1. Postural reactions were studied in six cats subjected to small, linear translations of the supporting surface in each of 16 different directions in the horizontal plane. Directions were specified in a polar coordinate system, with posterior translations being 0 degrees and leftward translations, 90 degrees. The data consisted of the forces exerted by each paw of the cat against the ground, measured in three orthogonal directions, vertical (z-axis), longitudinal (y-axis), and lateral (x-axis). 2. The force traces were analyzed by measuring the area under the curve during the postural reaction and dividing by the time of integration to give an average change in force. These values were normalized and plotted against direction of translation in polar coordinates, to give force tuning curves. The longitudinal and lateral force components were combined to generate force vectors in the horizontal plane. 3. Every cat responded to the platform translations with the same, simple strategy in which each hindlimb actively produced a correction force vector in one of only two possible directions. Participation of the forelimbs in the horizontal plane correction was not obligatory. While the direction of each hindlimb force vector was invariant, the amplitude was modulated according to the direction of platform movement. The resultant force vector, that acts through the center of mass of the animal, was in a direction opposite to the platform movement and directly opposed the perturbation. By this strategy, the cat was able to correct for destabilizing movements of the supporting surface in any direction in the horizontal plane. 4. It is concluded that the generation of forces between the paws and the ground is a high-level parameter that is controlled by the nervous system in a task-dependent manner. By using the strategy of restricting these forces to a set of two direction-invariant vectors, the problem of maintaining stance in the face of horizontal plane disturbances is greatly simplified.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 180 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3