Transfer impedances between different regions of branched excitable cells

Author:

Moore L. E.1,Yoshii K.1,Christensen B. N.1

Affiliation:

1. Department of Physiology and Biophysics, University of Texas MedicalBranch, Galveston 77550.

Abstract

1. The excitable properties of branched cells were measured using a combination of voltage-clamp and frequency-domain techniques. Point impedance functions from either the soma or growth cone of NG-108 cells were curve fitted with a reduced cable model at different membrane potentials to establish kinetic parameters. 2. Transfer impedance functions between the soma and growth cone were measured and simulated with a morphologically determined model. In these experiments the membrane potential was controlled by a single-electrode voltage clamp thus allowing an estimate of transfer functions for any arbitrary input, such as a single synaptic current for differing degrees of tonic synaptic drive. Furthermore, the integration of different regional inputs was evaluated based on the transfer functions between different locations on an individual cell. 3. The activation of an outward steady-state current leads to resonating impedance functions that were used to evaluate the kinetic properties of ionic channels in different regions of branched excitable cells. For simple branching patterns the point and transfer impedances show lower resonant frequencies for active growth cones compared with active somas. 4. More complex branching patterns showed the unexpected result that the voltage-dependent resonant frequency was higher for the growth cone recording than the soma. The presence of a higher resonant frequency when the growth cone is activated does not require more rapid kinetics of the active potassium conductance, since the time constant of the active conductance can be the same in the growth cone and the soma membrane. 5. In conclusion, the resonant frequencies, as well as all other aspects of the impedance functions, are complicated interactions of the detailed branching patterns and active conductances. In general, these interactions are not predictable from a passive electrotonic analysis, especially when the voltage-dependent conductances are distributed throughout the dendritic tree.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3