The accessory optic system of rabbit. II. Spatial organization of direction selectivity

Author:

Simpson J. I.1,Leonard C. S.1,Soodak R. E.1

Affiliation:

1. Department of Physiology and Biophysics, New York University MedicalCenter, New York 10016.

Abstract

1. To compare the spatial organization of the direction selectivity of neurons in the medial terminal nucleus (MTN) of the accessory optic system with that of neurons in the adjacent ventral tegmentum, extracellular single-unit recordings were made in the anesthetized rabbit. The ventral tegmental neurons were located in a region called the visual tegmental relay zone (VTRZ), which is defined by the ventral tegmental terminal field of contralaterally projecting MTN neurons. 2. Some of the present sample of MTN neurons (5 of 34) had monocular receptive fields composed of two parts distinguished by a marked difference in the orientation of their respective direction-selective tuning curves. For one part of the receptive field the preferred excitatory direction was "up," while for the other part it was "down." Such receptive fields for one eye were called bipartite, whereas the more usually encountered MTN receptive fields, which could be characterized by a single direction-selective tuning curve, were called uniform. 3. Of the 16 neurons recorded from the VTRZ, all but one were binocular. For these neurons, both uniform and bipartite receptive fields were found for each eye alone. The only monocular neuron encountered in the VTRZ had a contralateral, bipartite receptive field. 4. The spatial organization of the direction selectivity of bipartite receptive fields strongly suggests that they are suited to represent rotation of the visual field about a horizontal axis located in the vertical plane that divides the receptive field into two parts. 5. The boundary between the two parts of the bipartite receptive fields was found using handheld visual stimuli at one of two azimuthal locations, either close to 45 degrees or between 95 and 125 degrees (the 0 degree reference was rostral in the midsagittal plane). This particular structure of the bipartite receptive fields suggests that their preferred rotation axes have a close spatial relation to the best-response axes of the semicircular canals. 6. Seven VTRZ neurons were antidromically activated by electrical stimulation of the ipsilateral dorsal cap of the inferior olive. Since the receptive fields of VTRZ neurons have many of the structural features characteristic of the receptive fields of rostral dorsal cap neurons we conclude that the spatial organization of the receptive fields of dorsal cap neurons is, for the most part, synthesized prior to the inferior olive.(ABSTRACT TRUNCATED AT 400 WORDS)

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3