Nonuniform release probabilities underlie quantal synaptic transmission at a mammalian excitatory central synapse

Author:

Walmsley B.1,Edwards F. R.1,Tracey D. J.1

Affiliation:

1. Neural Research Laboratory, School of Anatomy, University of New SouthWales, Kensington, Australia.

Abstract

1. Excitatory postsynaptic potentials (EPSPs) evoked by impulses in single group I muscle afferents were recorded in dorsal spinocerebellar tract (DSCT) neurons in the spinal cords of anesthetized cats. Fluctuations in the amplitude of these single-fiber EPSPs were determined from measurements of EPSP peak amplitude and contaminating noise (800-4600 trials). 2. In a previous study at this connection, we found that these single-fiber EPSPs fluctuated in amplitude between approximately equal, or quantal, increments. However, these quantal fluctuations could not be described by simple binomial statistics (39). In the present study we have applied further analysis procedures to the same single-fiber EPSPs to formulate a more appropriate probabilistic model of transmission at this connection. 3. In the first stage we have demonstrated that each single-fiber EPSP is composed of the sum of a number (3-30) of uniform quantal events, and that there is extremely little variability in the amplitude of the single quantal event. 4. In a further procedure, we have demonstrated that these quantal fluctuations can be described by a compound binomial model in which each underlying quantal event is associated with a particular, but independent, release probability. The results of this analysis indicate that the probability of transmitter release varies considerably between release sites at this connection. (The use of such a compound binomial model reemphasized previous warnings concerning the interpretation of the results of all statistical models of quantal release. Problems regarding the non-unique nature of N, the total population of quantal events, and other such difficulties are discussed.) 5. A model of transmission at this connection is proposed, in which there are a number of "active" release sites, exhibiting generally high release probabilities, and a number of "reserve" release sites, with zero, or close to zero, release probability. The physiological consequences of such a scheme are discussed.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 101 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3