Acute effects of spinal transection on EPSPs produced by single homonymous Ia-fibers in soleus alpha-motoneurons in the cat

Author:

Cope T. C.1,Hickman K. R.1,Botterman B. R.1

Affiliation:

1. Department of Cell Biology and Anatomy, University of Texas HealthScience Center, Dallas 75235.

Abstract

1. Excitatory postsynaptic potentials (EPSPs) generated in soleus motoneurons by single homonymous Ia-fibers were measured using intracellular recording and the spike-triggered averaging technique. Two groups of barbiturate-anesthetized adult cats were studied: one with the spinal cord intact and the other with the spinal cord severed at thoracic segment 13 (T13) several hours prior to recording. 2. In cord-transected cats, single homonymous Ia-fibers produced EPSPs in soleus motoneurons that were, on average, larger and faster rising relative to normal, as they are for those produced in medial gastrocnemius (MG) motoneurons (8, 12, 13, 40). Specifically, mean EPSP amplitude and rise time were, respectively, 261 +/- 22 microV and 0.65 +/- 0.05 ms for the transected group vs. 160 +/- 21 microV and 0.96 +/- 0.08 ms for the intact group. The group means for each parameter were significantly different (P less than 0.005). 3. The group difference in EPSP amplitude was largely due to a decrease in number of small EPSPs in the transected group (11% less than 100 microV compared with the normal 41%) and not due to the occurrence of unusually large ones. Ratios of the largest to smallest amplitude EPSPs produced in the same motoneuron were similarly distributed for intact and transected groups, implying that the effect of transection on EPSP size was uniform across different Ia-fiber synapses made with the same motoneuron. Mean EPSP amplitude for each transected cat (n = 5) was larger than normal, but in some cases the increase took greater than 10 h to express itself. 4. The normal tendency for EPSP rise time to decline on average with amplitude was absent in the transected group, wherein rise time was reduced to similar average values in all amplitude categories. This suggests that the decrease in rise time occurred independently of the increase in amplitude. In contrast, EPSP half-width, which tended tow ward lower than normal values [5.63 +/- 0.36 (SE) ms vs. 6.51 +/- 0.44 ms; P greater than 0.10], decreased in proportion with rise time as evidenced by the preservation of the normal relation between those parameters in transected cats. Normalizing EPSPs by motoneuron time constant (tau) reduced the group differences in rise time and half-width, suggesting that a fall in tau contributes to the abbreviation of EPSP time course. 5. The condition of the spinal cord best accounted for differences in synaptic strength between groups.(ABSTRACT TRUNCATED AT 400 WORDS)

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3