Rhythmic fluctuations of dorsal root potentials and antidromic discharges of primary afferents during fictive locomotion in the cat

Author:

Dubuc R.1,Cabelguen J. M.1,Rossignol S.1

Affiliation:

1. Departement de Physiologie, Faculte de Medecine, Universite deMontreal, Quebec, Canada.

Abstract

1. This study examines rhythmical activity of primary afferents occurring during "fictive" locomotion in decorticate paralyzed cats. Oscillations of the dorsal root potential (DRP) at the frequency of the locomotor rhythm have been observed at the lumbosacral and cervical levels. In addition, rhythmic antidromic discharges of primary afferent units have been recorded from the proximal stumps of cut dorsal root filaments. A detailed study of the relationships between the DRP fluctuations, the antidromic discharges, and the locomotor activity monitored by recording extensor and flexor muscle nerves is presented. 2. Typical DRP recordings from both lumbosacral and cervical levels show two negative waves (N1 and N2) separated by positive troughs (P1 and P2) in each locomotor cycle. Linear regression analyses indicate that the first negative wave (which generally has the largest amplitude) is related to the flexor activity whereas the second is related to the extensor activity. The relative amplitude of the two negative waves may vary without apparent concomitant changes in the recorded flexor or extensor motor nerves. The positive troughs occur respectively close to the period of transition between flexor and extensor activities and between extensor and flexor activities. 3. DRPs of similar period and amplitude can be observed in different ipsilateral roots recorded simultaneously. The DRPs recorded bilaterally from the same segment have the same periodicity but are out-of-phase. Point-to-point variations of amplitude in bilaterally recorded roots are not correlated. This suggests that the polarization of primary afferents on one side is mainly related to the locomotor events on that side. DRPs have been recorded in cats spinalized at Th13 and injected with nialamide and l-DOPA. This suggests that although the supraspinal contribution may be important, at least part of the DRPs may result from locomotor activity within the spinal cord itself. 4. A salient finding in our experiments was that of rhythmic antidromic unit discharges in the proximal stump of cut dorsal root filaments. Of the 194 units recorded, 19% (37/194) discharged in distinct bursts occurring at fixed times in the locomotor cycle. The majority of the units discharged either one burst during the period of flexor or extensor activity or one burst during one of the two periods of transition. Three units discharged two bursts per locomotor cycle. The frequency of the antidromic discharges of some units in one limb were also found to be modulated by stimulation of the skin or passive manipulation of the limbs.(ABSTRACT TRUNCATED AT 400 WORDS)

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 115 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3