Sites of antagonist action on N-methyl-D-aspartic acid receptors studied using fluctuation analysis and a rapid perfusion technique

Author:

Mayer M. L.1,Westbrook G. L.1,Vyklicky L.1

Affiliation:

1. Unit of Neurophysiology and Biophysics, National Institute of ChildHealth and Human Development, Bethesda, Maryland 20892.

Abstract

1. Mouse hippocampal neurons in dissociated culture were grown at low density on previously plated hippocampal glial cell cultures and voltage clamped using the tight seal whole-cell patch-clamp technique. Flow pipes were used to rapidly exchange the extracellular solution, and to apply N-methyl-D-aspartic acid (NMDA) and some NMDA antagonists. Fluctuation analysis was used to estimate changes in the behavior of NMDA-activated ion channels during application of antagonists. In the presence of NMDA control spectra were well fit by single Lorentzian functions consistent with mean open times of 5-6 ms. 2. Two antagonists thought to act at the NMDA receptor agonist recognition site, 2-amino-5-phosphonovaleric acid (AP5) and kynurenic acid, did not produce changes in the mean open time or single channel conductance, consistent with their action as competitive antagonists. Onset of antagonism and recovery from the action of both AP5 and kynurenic acid was rapid and complete within 1 s. However, raising the extra-cellular glycine concentration, from 1 microM to 1 mM, reduced the potency of 100 microM kynurenic acid as an NMDA antagonist, suggesting that kynurenate has an additional action as a competitive antagonist at the glycine modulatory site on NMDA receptor channels. 3. In the presence of 150 microM magnesium NMDA spectra recorded at -60 mV were fit by double Lorentzian functions, consistent with single-channel events consisting of bursts of openings lasting 3.3 ms in duration, interrupted by blocking and unblocking events of average duration 0.18 ms. The onset and recovery from magnesium antagonism was rapid, and complete within 1 s, but was highly voltage dependent and at +40 mV magnesium (150 microM) failed to produce NMDA antagonism. These results are consistent with a voltage-dependent channel block of NMDA receptor channels produced by binding of magnesium to a site within the ion channel. 4. Zinc (30 microM) was a potent NMDA antagonist at both -60 and +40 mV, and at either potential appeared to reduce the mean open time of NMDA-activated ion channels from about 5 ms to approximately 3 ms. Over the frequency range measured, 1-1,000 Hz, NMDA spectra were well fit by single Lorentzians during zinc antagonism, in contrast to results obtained with magnesium. The mean single channel conductance also decreased in the presence of zinc to approximately 75% of control. Onset of antagonism and recovery from the action of zinc was rapid and complete within 1 s.(ABSTRACT TRUNCATED AT 400 WORDS)

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 115 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3