Spread of synchronous firing in longitudinal slices from the CA3 region of the hippocampus

Author:

Miles R.1,Traub R. D.1,Wong R. K.1

Affiliation:

1. Department of Neurology, Columbia University, New York 10032.

Abstract

1. Mechanisms underlying the propagation of synchronous epileptiform activity in disinhibited hippocampal slices were examined in experimental and computer simulation studies. 2. Experiments were performed with longitudinal slices of the CA3 region. Synchronous firing was initiated by stimulating stratum radiatum fibers in the presence of picrotoxin. It propagated smoothly and without decrement at velocities close to 0.15 m/s over distances up to 10 mm. 3. In elevated extracellular calcium, neuronal firing threshold was increased and synchronous burst firing did not spread. Monophasic excitatory postsynaptic potentials (EPSPs) were recorded in cells at limited distances from a stimulus in the presence of 10 mM Ca and picrotoxin. Axonal conduction velocity, estimated from EPSP latencies, was several times faster than the spread of synchronous firing. 4. EPSPs recorded in 5-7 mM Ca and picrotoxin could consist of two components. The properties of the first component were similar to those of synaptic events recorded in 10 mM Ca. The second component was of longer latency and unlike the first component was suppressed in responses to paired stimuli at interval 50-300 ms. Recordings from cells at different distances from a stimulus suggested that the second component spread further and more slowly than the first component. 5. In computer simulations the CA3 region was represented by a spatially distributed network of 9,000 excitatory neurons and 900 inhibitory cells. Individual cells and synapses had properties based on experimental data. The effects of varying synaptic strength and connectivity on the spread of activity in the model was examined. 6. When synaptic inhibition was functional in simulations, firing was restricted to a single action potential in model cells close to the stimulus, as in experiments. Synchronous burst firing spread throughout the neuronal array when fast synaptic inhibition was absent. The velocity of propagation was slower than conduction in simulated axons when synaptic contacts made by excitatory cells were spatially limited. Propagation velocity increased with increases in the spatial extent of excitatory connectivity. 7. Increasing the threshold of neurons in a region of the model network reduced the speed at which synchronous firing spread. In experiments focal application of gamma-aminobutyric acid (GABA) elevated neuronal firing threshold and slowed the propagation of synchrony in a local region. 8. As the strength of synaptic inhibition was gradually reduced, neuronal activity spread further and faster through the simulated neuronal network.(ABSTRACT TRUNCATED AT 400 WORDS)

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 200 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3