Pharmacological modulation of the rod pathway in the cat retina

Author:

Muller F.1,Wassle H.1,Voigt T.1

Affiliation:

1. Max-Planck-Institut fur Hirnforschung, Frankfurt, Federal Republic ofGermany.

Abstract

1. In the intact cat eye, the responses of ganglion cells to light stimulation were recorded extracellularly and the actions of iontophoretically applied 2-amino-4-phosphonobutyrate (APB), a potent agonist at ON-bipolars, and of strychnine, a glycine antagonist, were investigated. 2. Under light-adapted conditions, the activity of ON-center ganglion cells is decreased by APB but is increased by strychnine. APB and strychnine act independently of one another. 3. The activity of light-adapted OFF-center ganglion cells is increased by APB and by strychnine. The light response remains clearly modulated. Strychnine blocks the action of simultaneously applied APB. The results are in agreement with the action of a push-pull mechanism, according to which ON-cone-bipolars provide a glycinergic input into OFF-center ganglion cells. 4. Under dark-adapted conditions, APB blocks the light responses of both ON-center and OFF-center ganglion cells. The discharge rate of ON-center ganglion cells is completely suppressed; OFF-center ganglion cells show a high maintained discharge. 5. Strychnine blocks the scotopic light response of OFF-center ganglion cells and blocks the action of simultaneously applied APB. The light response of ON-center ganglion cells is hardly affected by strychnine. 6. The effects of strychnine on OFF-center ganglion cells are in agreement with the hypothesis that the glycinergic AII amacrine cells modulate the activity of the scotopic OFF-channel. 7. Intravitreally applied APB abolished the scotopic b-wave of the electroretinogram at concentrations of 100 microM. 8. Our data suggest that as in rabbit (10) the rod bipolars in cat retina are depolarizing (ON) bipolar cells.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3